woman wearing glasses standing outside

r. Teodora Baluta is looking for Ph.D. students to join her in researching deep fake detection, malicious AI use, and building secure AI models with privacy in mind. Photos by Terence Rushin, College of Computing

New cybersecurity research initiatives into generative artificial intelligence (AI) tools will soon be underway at Georgia Tech, thanks to the efforts of a new assistant professor in the School of Cybersecurity and Privacy (SCP).

While some researchers seek ways to integrate AI into security practices, Teodora Baluta studies the algorithms and datasets used to train new AI tools to assess their security in theory and practice.

Specifically, she investigates whether the outputs from generative AI tools are abusing data or producing text based on stolen data. As one of Georgia Tech’s newest faculty, Baluta is determined to build on the research she completed during her Ph.D. at the National University of Singapore. 

She plans to expand her past works by continuing to analyze existing AI technologies and researching ways to build better machine learning systems with security measures already in place. 

“One thing that excites me about joining SCP is its network of experts that can weigh in on aspects that are outside of my field,” said Baluta. “I am really looking forward to building on my past works by studying the bigger security picture of AI and machine learning.” 

As a new faculty member, Baluta is looking for Ph.D. students interested in joining her in these new research initiatives

“We’re going to be looking at topics such as the mathematical possibility of detecting deep fakes, uncovering the malicious intent behind AI use, and how to build better AI models with security and privacy safeguards,” she said. 

Baluta’s research has been recognized by Google’s Ph.D. fellowship program and Georgia Tech’s EECS Rising Stars Workshop in 2023. As a Ph.D. student, she earned the Dean’s Graduate Research Excellence Award and the President’s Graduate Fellowship at the National University of Singapore. She was also selected as a finalist for the Microsoft Research Ph.D. Fellowship, Asia-Pacific.

News Contact

John Popham

Communications Officer II

School of Cybersecurity and Privacy

Partners of the facility gathered for an official ribbon cutting ceremony.

Partners of the facility gathered for an official ribbon cutting ceremony. From left to right: Eric Vogel, Hightower Professor in MSE, and executive director for the Institute for Matter and Systems; Devesh Ranjan, Eugene C. Gwaltney, Jr. school chair and professor in the George W. Woodruff School of Mechanical Engineering; Julia Kubanek, Vice President of Interdisciplinary Research; Tequila Harris, professor in the Woodruff School and facility leader; Christine Conwell, interim executive director for the Strategic Energy Institute; Tim Liewen, interim executive vice president for Research; Thomas Kurfess, Regent's Professor in the Woodruff School and executive director of the Georgia Tech Manufacturing Institute; J. Carson Meredith, professor and James Preston Harris Faculty Fellow in the School of Chemical and Biomolecular Engineering, executive director of the Renewable Bioproducts Institute. Photo: Christopher McKenney.

Tequila Harris, professor in the George W. Woodruff School of Mechanical Engineering, next to the modular R2R equipment. Photo: Christopher McKenney.

Tequila Harris, professor in the George W. Woodruff School of Mechanical Engineering, next to the modular R2R equipment. Photo: Christopher McKenney.

The Highly Advanced Roll-to-Roll iManufacturing Systems (HARRiS) research group in the new R2R facility. Photo: Christopher McKenney.

The Highly Advanced Roll-to-Roll iManufacturing Systems (HARRiS) research group in the new R2R facility. Photo: Christopher McKenney.

Whether it’s developing new products, reducing costs, or increasing accessibility, innovations in manufacturing stand to improve the lives of companies and consumers alike. Georgia Tech recently took another step toward ensuring those innovations make it from lab to market with the launch of a Modular Pilot Scale Roll-to-Roll Manufacturing Facility. 

“As researchers develop new materials, one of the key aspects we’re missing is how to make them at scale. This is a major oversight because if we can’t make them at scale, we can’t transition from basic research to commercialization,” said Tequila Harris, a professor in the George W. Woodruff School of Mechanical Engineering. “With this new facility, we can prove our discoveries beyond lab-scale studies — and can go from materials innovation to product development at scale.”

Led by Harris, the new facility is the result of a partnership between the Georgia Tech Manufacturing Institute(GTMI), the Strategic Energy Institute, and the Woodruff School. As a pilot facility, it will serve as a testbed for scaling up manufacturing research open for Georgia Tech researchers as well as academic, government, and industry partners around the world.

“The larger vision I see at Georgia Tech involves innovation in manufacturing for large-scale industries,” said Georgia Tech’s Interim Executive Vice President for Research Tim Lieuwen at the facility’s unveiling event on Sept. 19. “It’s crucial that we’re innovating in basic science and technology, but we also need to be innovating in large-scale manufacturing.”

Roll-to-roll (R2R) manufacturing transforms flexible rolls of substrate materials, such as paper, metal foils, and plastics, into more complex, transportable rolls upon coating the surface with one or more fluids, such as inks, suspensions, and solutions, which are subsequently dried or cured on the base substrate. Its high yield and efficiency make R2R an ideal method for the sustainable, large-scale production of components for solar cells, batteries, flexible electronics, and separations — all industries that have expanded in Georgia in recent years.

“As a state institution, we’re ultimately here to serve our state,” said Lieuwen, who is also Regents’ Professor and David S. Lewis Jr. Chair in the Daniel Guggenheim School of Aerospace Engineering. “We’re seeing Georgia emerge as the national leader in terms of recruiting corporate investments in this space and in industries that will be served by this facility.”

Roll-to-Roll Innovations

The R2R process is similar to the production of newspapers, where a large roll of blank paper goes through a series of rollers printing text and photos. “The roll-to-roll aspect is the process of using a specialized tool to force fluid onto a moving surface,” says Harris. It’s one of the fastest-growing methods for producing thin film materials — photovoltaics used in solar cells, transistors in flexible electronics, and micro-batteries, for example — at a large scale. 

Harris’s group works to develop novel manufacturing tools, with a particular focus on understanding and improving the dynamics of thin film manufacturing to increase efficiency and minimize waste. Her group is particularly interested in slot die coating, an R2R technique where a liquid material is precisely deposited onto a substrate through a narrow slot. With the new pilot facility, researchers like Harris will be able to take their work to the next level.

“Slot die coating on a roll-to-roll can handle the broadest viscosity range of most coating methods. Therefore, you can process a lot of different materials very quickly and easily,” says Harris. “It’s one of the fastest-growing technologies in the U.S. — and currently, this is the most advanced modular pilot scale facility at an academic university in the United States.”

“Georgia Tech is way ahead of the curve in terms of our facilities,” says GTMI Executive Director and Regents’ Professor Thomas Kurfess. “This will grow our capability in the battery area, membranes, flexible electronics, and more to allow us to support the development of new technologies.”

“As technologies around cleantech continue to advance at an unprecedented pace, pilot manufacturing facilities provide a critical bridge between innovative benchtop research and commercial-scale production and manufacturing,” says Christine Conwell, interim executive director of the Strategic Energy Institute. “We are excited about the opportunities this R2R facility will provide to the Georgia Tech energy community and our industry partners.”

News Contact

Audra Davidson
Research Communications Program Manager
Georgia Tech Manufacturing Institute

Two Industrial Robots sloving a puzzle

Industrial Robots sloving a puzzle

The Institute for Robotics and Intelligent Machines (IRIM) launched a new initiatives program, starting with several winning proposals, with corresponding initiative leads that will broaden the scope of IRIM’s research beyond its traditional core strengths. A major goal is to stimulate collaboration across areas not typically considered as technical robotics, such as policy, education, and the humanities, as well as open new inter-university and inter-agency collaboration routes. In addition to guiding their specific initiatives, these leads will serve as an informal internal advisory body for IRIM. Initiative leads will be announced annually, with existing initiative leaders considered for renewal based on their progress in achieving community building and research goals. We hope that initiative leads will act as the “faculty face” of IRIM and communicate IRIM’s vision and activities to audiences both within and outside of Georgia Tech.

Meet 2024 IRIM Initiative Leads

 

Stephen Balakirsky; Regents' Researcher, Georgia Tech Research Institute & Panagiotis Tsiotras; David & Andrew Lewis Endowed Chair, Daniel Guggenheim School of Aerospace Engineering | Proximity Operations for Autonomous Servicing

Why It Matters: Proximity operations in space refer to the intricate and precise maneuvers and activities that spacecraft or satellites perform when they are in close proximity to each other, such as docking, rendezvous, or station-keeping. These operations are essential for a variety of space missions, including crewed spaceflights, satellite servicing, space exploration, and maintaining satellite constellations. While this is a very broad field, this initiative will concentrate on robotic servicing and associated challenges. In this context, robotic servicing is composed of proximity operations that are used for servicing and repairing satellites in space. In robotic servicing, robotic arms and tools perform maintenance tasks such as refueling, replacing components, or providing operation enhancements to extend a satellite's operational life or increase a satellite’s capabilities.

Our Approach: By forming an initiative in this important area, IRIM will open opportunities within the rapidly evolving space community. This will allow us to create proposals for organizations ranging from NASA and the Defense Advanced Research Projects Agency to the U.S. Air Force and U.S. Space Force. This will also position us to become national leaders in this area. While several universities have a robust robotics program and quite a few have a strong space engineering program, there are only a handful of academic units with the breadth of expertise to tackle this problem. Also, even fewer universities have the benefit of an experienced applied research partner, such as the Georgia Tech Research Institute (GTRI), to undertake large-scale demonstrations. Georgia Tech, having world-renowned programs in aerospace engineering and robotics, is uniquely positioned to be a leader in this field. In addition, creating a workshop in proximity operations for autonomous servicing will allow the GTRI and Georgia Tech space robotics communities to come together and better understand strengths and opportunities for improvement in our abilities.

Matthew Gombolay; Assistant Professor, Interactive Computing | Human-Robot Society in 2125: IRIM Leading the Way

Why It Matters: The coming robot “apocalypse” and foundation models captured the zeitgeist in 2023 with “ChatGPT” becoming a topic at the dinner table and the probability occurrence of various scenarios of AI driven technological doom being a hotly debated topic on social media. Futuristic visions of ubiquitous embodied Artificial Intelligence (AI) and robotics have become tangible. The proliferation and effectiveness of first-person view drones in the Russo-Ukrainian War, autonomous taxi services along with their failures, and inexpensive robots (e.g., Tesla’s Optimus and Unitree’s G1) have made it seem like children alive today may have robots embedded in their everyday lives. Yet, there is a lack of trust in the public leadership bringing us into this future to ensure that robots are developed and deployed with beneficence.

Our Approach: This proposal seeks to assemble a team of bright, savvy operators across academia, government, media, nonprofits, industry, and community stakeholders to develop a roadmap for how we can be the most trusted voice to guide the public in the next 100 years of innovation in robotics here at the IRIM. We propose to carry out specific activities that include conducting the activities necessary to develop a roadmap about Robots in 2125: Altruistic and Integrated Human-Robot Society. We also aim to build partnerships to promulgate these outcomes across Georgia Tech’s campus and internationally.

Gregory Sawicki; Joseph Anderer Faculty Fellow, School of Mechanical Engineering & Aaron Young; Associate Professor, Mechanical Engineering | Wearable Robotic Augmentation for Human Resilience 

Why It Matters: The field of robotics continues to evolve beyond rigid, precision-controlled machines for amplifying production on manufacturing assembly lines toward soft, wearable systems that can mediate the interface between human users and their natural and built environments. Recent advances in materials science have made it possible to construct flexible garments with embedded sensors and actuators (e.g., exosuits). In parallel, computers continue to get smaller and more powerful, and state-of-the art machine learning algorithms can extract useful information from more extensive volumes of input data in real time. Now is the time to embed lean, powerful, sensorimotor elements alongside high-speed and efficient data processing systems in a continuous wearable device.

Our Approach: The mission of the Wearable Robotic Augmentation for Human Resilience (WeRoAHR) initiative is to merge modern advances in sensing, actuation, and computing technology to imagine and create adaptive, wearable augmentation technology that can improve human resilience and longevity across the physiological spectrum — from behavioral to cellular scales. The near-term effort (~2-3 years) will draw on Georgia Tech’s existing ecosystem of basic scientists and engineers to develop WeRoAHR systems that will focus on key targets of opportunity to increase human resilience (e.g., improved balance, dexterity, and stamina). These initial efforts will establish seeds for growth intended to help launch larger-scale, center-level efforts (>5 years).

Panagiotis Tsiotras; David & Andrew Lewis Endowed Chair, Daniel Guggenheim School of Aerospace Engineering & Sam Coogan; Demetrius T. Paris Junior Professor, School of Electrical and Computer Engineering | Initiative on Reliable, Safe, and Secure Autonomous Robotics 

Why It Matters: The design and operation of reliable systems is primarily an integration issue that involves not only each component (software, hardware) being safe and reliable but also the whole system being reliable (including the human operator). The necessity for reliable autonomous systems (including AI agents) is more pronounced for “safety-critical” applications, where the result of a wrong decision can be catastrophic. This is quite a different landscape from many other autonomous decision systems (e.g., recommender systems) where a wrong or imprecise decision is inconsequential.

Our Approach: This new initiative will investigate the development of protocols, techniques, methodologies, theories, and practices for designing, building, and operating safe and reliable AI and autonomous engineering systems and contribute toward promoting a culture of safety and accountability grounded in rigorous objective metrics and methodologies for AI/autonomous and intelligent machines designers and operators, to allow the widespread adoption of such systems in safety-critical areas with confidence. The proposed new initiative aims to establish Tech as the leader in the design of autonomous, reliable engineering robotic systems and investigate the opportunity for a federally funded or industry-funded research center (National Science Foundation (NSF) Science and Technology Centers/Engineering Research Centers) in this area.

Colin Usher; Robotics Systems and Technology Branch Head, GTRI | Opportunities for Agricultural Robotics and New Collaborations

Why It Matters: The concepts for how robotics might be incorporated more broadly in agriculture vary widely, ranging from large-scale systems to teams of small systems operating in farms, enabling new possibilities. In addition, there are several application areas in agriculture, ranging from planting, weeding, crop scouting, and general growing through harvesting. Georgia Tech is not a land-grant university, making our ability to capture some of the opportunities in agricultural research more challenging. By partnering with a land-grant university such as the University of Georgia (UGA), we can leverage this relationship to go after these opportunities that, historically, were not available.

Our Approach: We plan to build collaborations first by leveraging relationships we have already formed within GTRI, Georgia Tech, and UGA. We will achieve this through a significant level of networking, supported by workshops and/or seminars with which to recruit faculty and form a roadmap for research within the respective universities. Our goal is to identify and pursue multiple opportunities for robotics-related research in both row-crop and animal-based agriculture. We believe that we have a strong opportunity, starting with formalizing a program with the partners we have worked with before, with the potential to improve and grow the research area by incorporating new faculty and staff with a unified vision of ubiquitous robotics systems in agriculture. We plan to achieve this through scheduled visits with interested faculty, attendance at relevant conferences, and ultimately hosting a workshop to formalize and define a research roadmap.

Ye Zhao; Assistant Professor, School of Mechanical Engineering | Safe, Social, & Scalable Human-Robot Teaming: Interaction, Synergy, & Augmentation

Why It Matters: Collaborative robots in unstructured environments such as construction and warehouse sites show great promise in working with humans on repetitive and dangerous tasks to improve efficiency and productivity. However, pre-programmed and nonflexible interaction behaviors of existing robots lower the naturalness and flexibility of the collaboration process. Therefore, it is crucial to improve physical interaction behaviors of the collaborative human-robot teaming.

Our Approach: This proposal will advance the understanding of the bi-directional influence and interaction of human-robot teaming for complex physical activities in dynamic environments by developing new methods to predict worker intention via multi-modal wearable sensing, reasoning about complex human-robot-workspace interaction, and adaptively planning the robot’s motion considering both human teaming dynamics and physiological and cognitive states. More importantly, our team plans to prioritize efforts to (i) broaden the scope of IRIM’s autonomy research by incorporating psychology, cognitive, and manufacturing research not typically considered as technical robotics research areas; (ii) initiate new IRIM education, training, and outreach programs through collaboration with team members from various Georgia Tech educational and outreach programs (including Project ENGAGES, VIP, and CEISMC) as well as the AUCC (World’s largest consortia of African American private institutions of higher education) which comprises Clark Atlanta University, Morehouse College, & Spelman College; and (iii) aim for large governmental grants such as DOD MURI, NSF NRT, and NSF Future of Work programs.

-Christa M. Ernst

Socrates

A year ago, Ray Hung, a master’s student in computer science, assisted Professor Thad Starner in constructing an artificial intelligence (AI)-powered anti-plagiarism tool for Starner’s 900-student Intro to Artificial Intelligence (CS3600) course.

While the tool proved effective, Hung began considering ways to deter plagiarism and improve the education system.

Plagiarism can be prevalent in online exams, so Hung looked at oral examinations commonly used in European education systems and rooted in the Socratic method.

One of the advantages of oral assessments is they naturally hinder cheating. Consulting ChatGPT wouldn’t benefit a student unless the student memorizes the entire answer. Even then, follow-up questions would reveal a lack of genuine understanding.

Hung drew inspiration from the 2009 reboot of Star Trek, particularly the opening scene in which a young Spock provides oral answers to questions prompted by AI.

“I think we can do something similar,” Hung said. “Research has shown that oral assessment improves people’s material understanding, critical thinking, and communication skills. 

“The problem is that it’s not scalable with human teachers. A professor may have 600 students. Even with teaching assistants, it’s not practical to conduct oral assessments. But with AI, it’s now possible.”

Hung developed The Socratic Mind with Starner, Scheller College of Business Assistant Professor Eunhee Sohn, and researchers from the Georgia Tech Center for 21st Century Universities (C21U).

The Socratic Mind is a scalable, AI-powered oral assessment platform leveraging Socratic questioning to challenge students to explain, justify, and defend their answers to showcase their understanding.

“We believe that if you truly understand something, you should be able to explain it,” Hung said. 

“There is a deeper need for fostering genuine understanding and cultivating high-order thinking skills. I wanted to promote an education paradigm in which critical thinking, material understanding, and communication skills play integral roles and are at the forefront of our education.”

Hung entered his project into the Learning Engineering Tools Competition, one of the largest education technology competitions in the world. Hung and his collaborators were among five teams that won a Catalyst Award and received a $50,000 prize.

Benefits for Students

The Socratic Mind will be piloted in several classes this semester with about 2,000 students participating. One of those classes is the Intro to Computing (CS1301) class taught by College of Computing Professor David Joyner.

Hung said The Socratic Mind will be a resource students can use to prepare to defend their dissertation or to teach a class if they choose to pursue a Ph.D. Anyone struggling with public speaking or preparing for job interviews will find the tool helpful. 

“Many users are interested in AI roleplay to practice real-world conversations,” he said. “The AI can roleplay a manager if you want to discuss a promotion. It can roleplay as an interviewer if you have a job interview. There are a lot of uses for oral assessment platforms where you can practice talking with an AI.

“I hope this tool helps students find their education more valuable and help them become better citizens, workers, entrepreneurs, or whoever they want to be in the future.”

Hung said the chatbot is not only conversational but also adverse to human persuasion because it follows the Socratic method of asking follow-up questions.

“ChatGPT and most other large language models are trained as helpful, harmless assistants,” he said. “If you argue with it and hold your position strong enough, you can coerce it to agree. We don’t want that.

“The Socratic Mind AI will follow up with you in real-time about what you just said, so it’s not a one-way conversation. It’s interactive and engaging and mimics human communication well.”

Educational Overhaul

C21U Director of Research in Education Innovation Jonna Lee and C21U Research Scientist Meryem Soylu will measure The Socratic Mind’s effectiveness during the pilot and determine its scalability.

“I thought it would be interesting to develop this further from a learning engineering perspective because it’s about systematic problem solving, and we want to create scalable solutions with technologies,” Lee said.

“I hope we can find actionable insights about how this AI tool can help transform classroom learning and assessment practices compared to traditional methods. We see the potential for personalized learning for various student populations, including non-traditional lifetime learners."

Hung said The Socratic Mind has the potential to revolutionize the U.S. education system depending on how the system chooses to incorporate AI.  

Recognizing the advancement of AI is likely an unstoppable trend. Hung advocates leveraging AI to enhance learning and unlock human potential rather than focusing on restrictions.

“We are in an era in which information is abundant, but wisdom is scarce,” Hung said. “Shallow and rapid interactions drive social media, for example. We think it’s a golden time to elevate people’s critical thinking and communication skills.”

For more information about The Socratic Mind and to try a demo, visit the project's website.

News Contact

Nathan Deen

Communications Officer

School of interactive Computing

Tech AI and CSSE Forge Partnership

In a major step forward for deploying artificial intelligence (AI) in industry, Georgia Tech’s newly established AI hub, Tech AI, has partnered with the Center for Scientific Software Engineering (CSSE). This collaboration aims to bridge the gap between academia and industry by advancing scalable AI solutions in sectors such as energy, mobility, supply chains, healthcare, and services.

Building on the Foundation of Success

CSSE, founded in late 2021 and supported by Schmidt Sciences as part of their VISS initiative, was created to advance and support scientific research by applying modern software engineering practices, cutting-edge technologies, and modern tools to the development of scientific software within and outside Georgia Tech. CSSE is led by Alex Orso,  professor and associate dean in the College of Computing,  and Jeff Young, a principal scientist at Georgia Tech. The Center's team boasts over 60 years of combined experience, with engineers from companies such as Microsoft, Amazon, and various startups, working under the supervision of the Center’s Head of Engineering, Dave Brownell. Their focus is on turning cutting-edge research into real-world products.

“Software engineering is about much more than just writing code,” Orso explained. “It’s also about specifying, designing, testing, deploying, and maintaining these systems.”

A Partnership to Support AI Research and Innovation

Through this collaboration, CSSE’s expertise will be integrated into Tech AI to create a software engineering division that can support AI engineering and also create new career opportunities for students and researchers.

Pascal Van Hentenryck, the A. Russell Chandler III Chair and professor in the H. Milton Stewart School of Industrial Engineering (ISyE)  and director of both the NSF AI Research Institute for Advances in Optimization (AI4OPT) and Tech AI, highlighted the potential of this partnership.

“We are impressed with the technology and talent within CSSE,” Van Hentenryck said. “This partnership allows us to leverage an existing, highly skilled engineering team rather than building one from scratch. It’s a unique opportunity to build the engineering pillar of Tech AI and push our AI initiatives forward, moving from pilots to products.”

“Joining our forces and having a professional engineering resource within Tech AI will give Georgia Tech a great competitive advantage over other AI initiatives,” Orso added.

One of the first projects under this collaboration focuses on AI in energy, particularly in developing new-generation, AI-driven, market clearing optimization and real-time risk assessment. Plans are also in place to pursue several additional projects, including the creation of an AI-powered search engine assistant, demonstrating the center’s ability to tackle complex, real-world problems.

This partnership is positioned to make a significant impact on applied AI research and innovation at Georgia Tech. By integrating modern software engineering practices, the collaboration will address key challenges in AI deployment, scalability, and sustainability, and translate AI research innovations into products with real societal impact.

“This is a match made in heaven,” Orso noted, reflecting on the collaboration’s alignment with Georgia Tech’s strategic goals to advance technology and improve human lives. Van Hentenryck added that “the collaboration is as much about creating new technologies as it is about educating the next generation of engineers.”

Promoting Open Source at Tech AI

A crucial element supporting the new Tech AI and CSSE venture is Georgia Tech’s Open Source Program Office (OSPO), a joint effort with the College of Computing, PACE, and the Georgia Tech Library. As an important hub of open-source knowledge, OSPO will provide education, training, and guidance on best practices for using and contributing to open-source AI frameworks.

“A large majority of the software driving our current accomplishments in AI research and development is built on a long history of open-source software and data sets, including frameworks like PyTorch and models like Meta’s LLaMA,” said Jeff Young, principal investigator at OSPO. “Understanding how we can best use and contribute to open-source AI is critical to our future success with Tech AI, and OSPO is well-suited to provide guidance, training, and expertise around these open-source tools, frameworks, and pipelines.”

Looking Ahead

As the partnership between Tech AI and CSSE evolves, both groups anticipate a future in which interdisciplinary research drives innovation. By integrating AI with real-world software engineering, the collaboration promises to create new opportunities for students, researchers, and Georgia Tech as a whole.

With a strong foundation, a talented team, and a clear vision, Tech AI and CSSE together are set to break new ground in AI and scientific research, propelling Georgia Tech to the forefront of technological advancement in the AI field.

 

About the Center for Scientific Software Engineering (CSSE)

The CSSE at Georgia Tech, supported by an $11 million grant from Schmidt Sciences, is one of four scientific software engineering centers within the Virtual Institute for Scientific Software (VISS). Its mission is to develop scalable, reliable, open-source software for scientific research, ensuring maintainability and effectiveness. Learn more at https://ssecenter.cc.gatech.edu.

About Georgia Tech’s Open Source Program Office (OSPO)

Georgia Tech’s OSPO supports the development of open-source research software across campus. Funded by a Sloan Foundation grant, OSPO provides community guidelines, training, and outreach to promote a thriving open-source ecosystem. Learn more at https://ospo.cc.gatech.edu.

About Schmidt Sciences

Schmidt Sciences is a nonprofit organization founded in 2024 by Eric and Wendy Schmidt that works to advance science and technology that deepens human understanding of the natural world and develops solutions to global issues. The organization makes grants in four areas—AI and advanced computing, astrophysics and space, biosciences and climate—as well as supporting researchers in a variety of disciplines through its science systems program. Learn more at https://www.schmidtsciences.org/

About Tech AI

Tech AI is Georgia Tech’s AI hub, advancing AI through research, education, and responsible deployment. The hub focuses on AI solutions for real-world applications, preparing the next generation of AI leaders. Learn more at https://ai.gatech.edu.

News Contact

Breon Martin

AI Marketing Communications Manager

Zhantau Liu

Zhantao Liu with the new low-cost cathode that could revolutionize lithium-ion batteries and the EV industry. Photo by Jerry Grillo

Hailong Chen and Zhantao Liu

Hailong Chen and Zhantao Liu present a new, low-cost cathode for all-solid-state lithium-ion batteries. Photo by Jerry Grillo

A multi-institutional research team led by Georgia Tech’s Hailong Chen has developed a new, low-cost cathode that could radically improve lithium-ion batteries (LIBs) — potentially transforming the electric vehicle (EV) market and large-scale energy storage systems. 

“For a long time, people have been looking for a lower-cost, more sustainable alternative to existing cathode materials. I think we’ve got one,” said Chen, an associate professor with appointments in the George W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering.

The revolutionary material, iron chloride (FeCl3), costs a mere 1-2% of typical cathode materials and canstore the same amount of electricity. Cathode materials affect capacity, energy, and efficiency, playing a major role in a battery’s performance, lifespan, and affordability.

“Our cathode can be a game-changer,” said Chen, whose team describes its work in Nature Sustainability. “It would greatly improve the EV market — and the whole lithium-ion battery market.”

First commercialized by Sony in the early 1990s, LIBs sparked an explosion in personal electronics, like smartphones and tablets. The technology eventually advanced to fuel electric vehicles, providing a reliable, rechargeable, high-density energy source. But unlike personal electronics, large-scale energy users like EVs are especially sensitive to the cost of LIBs. 

Batteries are currently responsible for about 50% of an EV’s total cost, which makes these clean-energy cars more expensive than their internal combustion, greenhouse-gas-spewing cousins. The Chen team’s invention could change that.

Building a Better Battery

Compared to old-fashioned alkaline and lead-acid batteries, LIBs store more energy in a smaller package and power a device longer between charges. But LIBs contain expensive metals, including semiprecious elements like cobalt and nickel, and they have a high manufacturing cost. 

So far, only four types of cathodes have been successfully commercialized for LIBs. Chen’s would be the fifth, and it would represent a big step forward in battery technology: the development of an all-solid-state LIB.

Conventional LIBs use liquid electrolytes to transport lithium ions for storing and releasing energy. They have hard limits on how much energy can be stored, and they can leak and catch fire. But all-solid-state LIBs use solid electrolytes, dramatically boosting a battery’s efficiency and reliability and making it safer and capable of holding more energy. These batteries, still in the development and testing phase, would be a considerable improvement. 

As researchers and manufacturers across the planet race to make all-solid-state technology practical, Chen and his collaborators have developed an affordable and sustainable solution. With the FeCl3 cathode, a solid electrolyte, and a lithium metal anode, the cost of their whole battery system is 30-40% of current LIBs. 

“This could not only make EVs much cheaper than internal combustion cars, but it provides a new and promising form of large-scale energy storage, enhancing the resilience of the electrical grid,” Chen said. “In addition, our cathode would greatly improve the sustainability and supply chain stability of the EV market.”

Solid Start to New Discovery

Chen’s interest in FeCl3 as a cathode material originated with his lab’s research into solid electrolyte materials. Starting in 2019, his lab tried to make solid-state batteries using chloride-based solid electrolyteswith traditional commercial oxide-based cathodes. It didn’t go well — the cathode and electrolyte materials didn’t get along. 

The researchers thought a chloride-based cathode could provide a better pairing with the chloride electrolyte to offer better battery performance.

“We found a candidate (FeCl3) worth trying, as its crystal structure is potentially suitable for storing and transporting Li ions, and fortunately, it functioned as we expected,” said Chen.

Currently, the most popularly used cathodes in EVs are oxides and require a gigantic amount of costly nickel and cobalt, heavy elements that can be toxic and pose an environmental challenge. In contrast, the Chen team’s cathode contains only iron (Fe) and chlorine (Cl)—abundant, affordable, widely used elements found in steel and table salt.

In their initial tests, FeCl3 was found to perform as well as or better than the other, much more expensive cathodes. For example, it has a higher operational voltage than the popularly used cathode LiFePO4 (lithium iron phosphate, or LFP), which is the electrical force a battery provides when connected to a device, similar to water pressure from a garden hose. 

This technology may be less than five years from commercial viability in EVs. For now, the team will continue investigating FeCl3 and related materials, according to Chen. The work was led by Chen and postdoc Zhantao Liu (the lead author of the study). Collaborators included researchers from Georgia Tech’s Woodruff School (Ting Zhu) and the School of Earth and Atmospheric Sciences (Yuanzhi Tang), as well as the Oak Ridge National Laboratory (Jue Liu) and the University of Houston (Shuo Chen).

“We want to make the materials as perfect as possible in the lab and understand the underlying functioning mechanisms,” Chen said. “But we are open to opportunities to scale up the technology and push it toward commercial applications.”

CITATION: Zhantao Liu, Jue Liu, Simin Zhao, Sangni Xun, Paul Byaruhanga, Shuo Chen, Yuanzhi Tang, Ting Zhu, Hailong Chen. “Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries.” Nature Sustainability.

FUNDING: National Science Foundation (Grant Nos. 1706723 and 2108688)

 

 

News Contact

Jerry Grillo

KDD 2024
KDD 2024
KDD 2024 Austin P. Wright

A new algorithm tested on NASA’s Perseverance Rover on Mars may lead to better forecasting of hurricanes, wildfires, and other extreme weather events that impact millions globally.

Georgia Tech Ph.D. student Austin P. Wright is first author of a paper that introduces Nested Fusion. The new algorithm improves scientists’ ability to search for past signs of life on the Martian surface. 

In addition to supporting NASA’s Mars 2020 mission, scientists from other fields working with large, overlapping datasets can use Nested Fusion’s methods toward their studies.

Wright presented Nested Fusion at the 2024 International Conference on Knowledge Discovery and Data Mining (KDD 2024) where it was a runner-up for the best paper award. KDD is widely considered the world's most prestigious conference for knowledge discovery and data mining research.

“Nested Fusion is really useful for researchers in many different domains, not just NASA scientists,” said Wright. “The method visualizes complex datasets that can be difficult to get an overall view of during the initial exploratory stages of analysis.”

Nested Fusion combines datasets with different resolutions to produce a single, high-resolution visual distribution. Using this method, NASA scientists can more easily analyze multiple datasets from various sources at the same time. This can lead to faster studies of Mars’ surface composition to find clues of previous life.

The algorithm demonstrates how data science impacts traditional scientific fields like chemistry, biology, and geology.

Even further, Wright is developing Nested Fusion applications to model shifting climate patterns, plant and animal life, and other concepts in the earth sciences. The same method can combine overlapping datasets from satellite imagery, biomarkers, and climate data.

“Users have extended Nested Fusion and similar algorithms toward earth science contexts, which we have received very positive feedback,” said Wright, who studies machine learning (ML) at Georgia Tech.

“Cross-correlational analysis takes a long time to do and is not done in the initial stages of research when patterns appear and form new hypotheses. Nested Fusion enables people to discover these patterns much earlier.”

Wright is the data science and ML lead for PIXLISE, the software that NASA JPL scientists use to study data from the Mars Perseverance Rover.

Perseverance uses its Planetary Instrument for X-ray Lithochemistry (PIXL) to collect data on mineral composition of Mars’ surface. PIXL’s two main tools that accomplish this are its X-ray Fluorescence (XRF) Spectrometer and Multi-Context Camera (MCC).

When PIXL scans a target area, it creates two co-aligned datasets from the components. XRF collects a sample's fine-scale elemental composition. MCC produces images of a sample to gather visual and physical details like size and shape. 

A single XRF spectrum corresponds to approximately 100 MCC imaging pixels for every scan point. Each tool’s unique resolution makes mapping between overlapping data layers challenging. However, Wright and his collaborators designed Nested Fusion to overcome this hurdle.

In addition to progressing data science, Nested Fusion improves NASA scientists' workflow. Using the method, a single scientist can form an initial estimate of a sample’s mineral composition in a matter of hours. Before Nested Fusion, the same task required days of collaboration between teams of experts on each different instrument.

“I think one of the biggest lessons I have taken from this work is that it is valuable to always ground my ML and data science problems in actual, concrete use cases of our collaborators,” Wright said. 

“I learn from collaborators what parts of data analysis are important to them and the challenges they face. By understanding these issues, we can discover new ways of formalizing and framing problems in data science.”

Wright presented Nested Fusion at KDD 2024, held Aug. 25-29 in Barcelona, Spain. KDD is an official special interest group of the Association for Computing Machinery. The conference is one of the world’s leading forums for knowledge discovery and data mining research.

Nested Fusion won runner-up for the best paper in the applied data science track, which comprised of over 150 papers. Hundreds of other papers were presented at the conference’s research track, workshops, and tutorials. 

Wright’s mentors, Scott Davidoff and Polo Chau, co-authored the Nested Fusion paper. Davidoff is a principal research scientist at the NASA Jet Propulsion Laboratory. Chau is a professor at the Georgia Tech School of Computational Science and Engineering (CSE).

“I was extremely happy that this work was recognized with the best paper runner-up award,” Wright said. “This kind of applied work can sometimes be hard to find the right academic home, so finding communities that appreciate this work is very encouraging.”

News Contact

Bryant Wine, Communications Officer
bryant.wine@cc.gatech.edu

Ankur Singh in a lab

Bioengineer Ankur Singh works to create functional models of the human immune system in the lab. (Credit: Ankur Singh)

Microscopy image of a human tonsil organ with B cell follicle and surrounding cells. The image shows stromal cells (red), proliferative B cells (green), and the nucleus (aqua blue). (Credit: Deepali Balasubramani/Ankur Singh)

Microscopy image of a human tonsil organ with B cell follicle and surrounding cells. Visible are stromal cells (red), proliferative B cells (green), and the nucleus (aqua blue). (Credit: Deepali Balasubramani/Ankur Singh)

The National Institutes of Health (NIH) has awarded $7.5 million to Ankur Singh, Carl Ring Family Professor in the George W. Woodruff School of Mechanical Engineering (ME) and professor in the Wallace H. Coulter Department of Biomedical Engineering (BME) at Georgia Tech and Emory, for his pioneering research in creating functional models of the human immune system in the lab.

The funding, sourced from the National Institute of Allergy and Infectious Diseases, supports two projects aimed at developing human immune organoids, which are sophisticated models engineered to replicate and study the natural human immune responses. The research could revolutionize vaccine development and immune system research, particularly for aging populations.

"Little advancement has been made in this area due to the complex nature of the immune system and the challenges of making a functional human immune tissue outside the body,” said Singh, who is also director of the Center for Immunoengineering at Georgia Tech. “I am grateful to the NIH for supporting our work, which will enable us to develop an advanced technology that can help solve the problems of emerging infections and enhance our timely response to them.”

Building Next-Generation Human Immune Organoids

The goal of Singh’s first project is to replicate the complex environment of germinal centers (GCs) — the sites within lymph nodes where B cells are trained to produce the antibodies crucial for fighting infections. While animal models and current engineered systems have offered insights, they fall short in recreating the intricate processes that occur in human GCs, which limits their utility in vaccine development and understanding immune responses.

Singh’s method involves using a hydrated polymer-based gel material to create a structure that mimics the environment of lymphoid tissue in the body. By adding human immune cells (like B cells, T cells, and support cells) into this gel, the project tries to recreate how B cells mature into specialized immune cells that are important for a strong and lasting immune response. This advancement will allow scientists to grow and study these cells in the lab and use them for better vaccine testing, therapeutic development including cell-based therapies, and to deepen our understanding of the immune system.

The second project addresses a pressing issue in public health: the decline in immune function with age. As people age, their ability to mount effective immune responses against new infections diminishes, leading to higher mortality rates from diseases such as influenza and Covid-19. However, the underlying mechanisms — whether due to defects in aged B cells, impaired T cells, or changes in the lymphoid tissue environment — remain poorly understood.

Singh’s research proposes the development of an “aged B cell follicle” organoid, a novel platform that replicates the lymphoid microenvironment of older individuals. This system will allow researchers to dissect the factors driving age-related declines in immune function, offering a new tool for studying how aged B cells respond to antigens and identifying molecular targets to rejuvenate immune responses.

A Pioneering Step Forward in Immunology Research

The broader impact of Singh’s organoid research is wide-ranging. By enabling the study of human immune responses in a controlled, reproducible environment, the organoids could dramatically accelerate the development of vaccines and immunotherapies. The models could also provide new insights into whether a particular vaccine will be effective for a given individual, potentially reducing the time and cost of clinical trials.

Singh’s aged immune organoid platform could serve as a rapid screening tool for identifying older individuals who are likely to respond poorly to vaccines, enabling more personalized and effective vaccination strategies for that population. The models could be particularly useful in the context of pandemics or seasonal flu outbreaks, where timely and effective immunization is critical.

“By securing this substantial NIH funding, Singh’s work is poised to make a significant impact on both the scientific community and public health,” said Andrés García, executive director of the Parker H. Petit Institute for Bioengineering and Bioscience, Regents' Professor in ME, the Petit Director's Chair in Bioengineering and Bioscience, and a collaborator on Singh’s first project. “This innovative immunoengineering research not only promises to advance our understanding of immune system function and aging, but also holds the potential to transform vaccine development, offering new hope for more effective disease prevention strategies across the lifespan.”

The NIH’s investment in Singh’s research underscores a growing recognition of the need for innovative approaches to studying human immunity. The Food and Drug Administration Modernization Act 2.0, for example, promotes the use of organs-on-chip technologies in the service of drug development. As organoid technologies continue to evolve, they could come to represent the future of immunological research, providing powerful new tools to combat infectious diseases and improve health outcomes globally.

"Reflecting on the pandemic, we relied on years of research to develop vaccines and understand immune responses,” Singh said. “This new technology will allow us to innovate more rapidly and take bold steps toward creating an immune system outside the body.”

 

---

Key collaborators on the first project include Andrés García; Ahmet Coskun, the Bernie-Marcus Early-Career Professor in BME; and Dr. Ignacio Sanz, Mason I. Lowance Professor of Medicine and Pediatrics and chief of the chief of the Division of Rheumatology at Emory School of Medicine. 

Key collaborators on the second project include Coskun; Jeremy Boss, professor and chair of the Department of Microbiology and Immunology at Emory School of Medicine; and Ranjan Sen, senior investigator in the Laboratory of Molecular Biology and Immunology at NIH’s National Institute on Aging. 

News Contact

Catherine Barzler, Senior Research Writer/Editor

catherine.barzler@gatech.edu

Anna Ivanova

Anna Ivanova, assistant professor in the School of Psychology at Georgia Tech.

Anna Ivanova, assistant professor in the School of Psychology, was recently named to the MIT Technology Review’s 35 Innovators Under 35 for 2024 for her work on language processing in the human brain and artificial intelligence applications.

A key pillar of Ivanova’s work involves large language models (LLM) commonly used in artificial intelligence tools like ChatGPT. By approaching the study of LLMs with cognitive science techniques, Ivanova hopes to bring us closer to more functional AIs — and a better understanding of the brain.

“I am happy that, these days, language and human cognition are topics that the world cares deeply about, thanks to recent developments in AI,” says Ivanova, who is also a member of Georgia Tech’s Neuro Next Initiative, a burgeoning interdisciplinary research hub for neuroscience, neurotechnology, and society. “Not only are these topics important, but they are also fun to study.” 

Learn more about Ivanova’s research.

News Contact

Audra Davidson
Communications Program Manager
Neuro Next Initiative

Mikkel Thomas speakers with K-12 Educators during a summer training

The Institute for Matter and Systems (IMS) has received $700,000 in funding from the National Science Foundation (NSF) for two education and outreach programs. 

The awards will support the Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) programs at Georgia Tech. The REU summer internship program provides undergraduate students from two- and four-year programs the chance to perform cutting-edge research at the forefront of nanoscale science and engineering. The RET program for high school teachers and technical college faculty offers a paid opportunity to experience the excitement of nanotechnology research and to share this experience in their classrooms. 

“This NSF funding allows us to be able to do more with the programs,” said Mikkel Thomas, associate director for education and outreach. “These are programs that have existed in the past, but we haven’t had external funding for the last three years. The NSF support allows us to do more —  bring more students into the program or increase the RET stipends.”

In addition to the REU and RET programs, IMS offers short courses and workshops focused on professional development, instructional labs for undergraduate and graduate students, a certificate for veterans in microelectronics and nano-manufacturing, and community engagement activities such as the Atlanta Science Festival. 

News Contact

Amelia Neumeister | Communications Program Manager