Sep. 26, 2023
Dipayan Banerjee and Sushil Varma, Ph.D. students in Operations Research at the H. Milton Stewart School of Industrial and Systems Engineering (ISyE), were recently selected as finalists for the INFORMS Transportation Science and Logistics (TSL) student paper competition. The winner will receive the TSL Best Student Paper Award, given to an outstanding paper primarily authored by a student(s) and whose topic is of interest to the broad TSL community.
Out of a total of 40 submissions, four were designated as finalists. The winner will be chosen at the October 15-18, 2023 INFORMS Annual Meeting taking place in Phoenix Arizona, during which the finalists will showcase their work in a dedicated session. All finalists receive a commemorative plaque, and the winning entrant(s) receives a $500 honorarium. In addition, the winning paper, if not published or under review elsewhere, will be invited for a fast-track review at Transportation Science.
Dipayan Banerjee
Fleet Sizing and Service Region Partitioning for Same-Day Delivery Systems
Many existing Same-Day Delivery (SDD) studies focus primarily on operational dispatch problems and do not consider system design questions. Furthermore, prior work on SDD system design does not consider the fleet sizing decision when a service region may be partitioned into zones dedicated to individual vehicles (such designs have been shown to improve system efficiency in related vehicle routing settings). Banerjee's research utilizes a novel approach to addressing two key tactical design challenges when planning an SDD system: figuring out how many delivery vehicles you need and dividing the delivery area into manageable zones.
Using continuous approximations to capture average-case operational behavior, the problem of independently maximizing the area of a single-vehicle delivery zone is considered first. The approach then characterizes area-maximizing dispatching policies and leverages the results to develop a procedure for calculating optimal areas as a function of a zone's distance from the depot, given a maximum number of daily dispatches per vehicle. Using minimal computation, the approach specifies fleet sizes and builds vehicle delivery zones that meet operational requirements, verified by simulation results.
Sushil Varma
Electric Vehicle Fleet and Charging Infrastructure Planning
Varma's research focuses on finding the best way to dispatch electric vehicles to pick up customers while making sure they charge periodically. As customer requests arrive, system operators must determine the minimum number of vehicles and chargers for a given service level, along with a matching and charging policy that maximizes that service level. Varma's approach provides a sharp characterization of the fleet size and the charging infrastructure requirements as demand grows. The research highlights the fundamental differences between planning for an electric vehicle system and a gas-powered system. To understand the difference, note that serving a customer comprises two steps - pickup and trip, each contributing to the fleet size requirement of the system. As EVs require charging time, they need more vehicles to compensate for the trip part of the service. In turn, the optimal dispatching policy can reduce the EV requirement induced by the pick up part of the service by lowering the pickup times, owing to the extra EVs due to the trip phase. The reduction in the EV requirement depends on the number of charging stations and the size of the EV battery packs.
The research proposes the "Power-of-d" dispatching policy, which achieves this performance by selecting the d closest vehicles to a trip request and choosing the one with the highest battery level. Varma also conducted detailed simulations that verified the scaling results. The paper discusses how the results extend to accommodate demand that increases/decreases repetitively or cyclically over time.
About Dipayan
Dipayan Banerjee is a fifth-year ISyE Ph.D. candidate advised by Professors Alan Erera and Alejandro Toriello. He is broadly interested in optimization for logistics and supply chain management with a focus on modern e-commerce systems. His doctoral research, supported by the NSF Graduate Research Fellowship and the Eisenhower Transportation Research Fellowship, studies demand management and delivery optimization for e-retail fulfillment. Dipayan was jointly awarded ISyE's Atlanta Air Cargo Association Fellowship for Ph.D. Research Excellence in Supply Chain Engineering in 2022. In addition to being named a finalist for the 2023 INFORMS TSL Society Best Student Paper Award, he also was a finalist for the 2019 INFORMS Undergraduate Operations Research Prize.
About Sushil
Sushil Varma, also a 5th-year ISyE Ph.D. student, is advised by Professor Siva Theja Maguluri. His research interests include queueing theory, game theory, and revenue management with applications in electric vehicles, online marketplaces like ride-hailing, load balancing, and stochastic processing/matching networks. Sushil was awarded the Stephen. S. Lavenberg Best Student Paper Award in IFIP Performance 2021 and the Alice and John Jarvis Best Student Paper Award in 2022.
We extend our wishes for success to both of these remarkable students. Their dedication, hard work, and commitment to their research have already set them on a remarkable path. Regardless of the outcome, their recognition is a testament to academic excellence.
Sep. 06, 2023
“A stitch in time saves nine,” goes the old saying. For a company in Georgia, that adage became very real when damage to a key piece of machinery threatened its operation. The group helping with the stitch in time was the Georgia Manufacturing Extension Partnership (GaMEP), a program of Georgia Tech's Enterprise Innovation Institute that — for more than 60 years — has been helping small- to medium-sized manufacturers in Georgia stay competitive and grow, boosting economic development across the state.
Silon US, a Peachtree City manufacturer that designs and produces engineered compounds used to create a wide range of products — from automotive applications to building materials, such as PEX piping and wire and cable, was experiencing problems with their extrusion line during a time of increasing customer demand. Problems with the drive mechanism on that extrusion line, a piece of equipment critical to the company’s ability to produce, threatened to shut them down. With replacement parts several weeks away, was it safe to continue operating? At what throughput rates? How much collateral damage might be incurred if they continued to operate?
That’s when Silon managers turned to GaMEP for help.
After working through ideas with GaMEP’s manufacturing experts, the team installed wireless condition monitoring sensors that provide continuous, real-time insights on their manufacturing assets’ health. With the sensors, Silon was able to find a sweet spot that not only allowed them to continue operating but also kept them from overexerting the equipment, preventing further damage.
The solution to that problem has now become a routine part of Silon’s process, as company technicians continue to use this sensor technology for early detection of any deviations or anomalies in the machinery’s health, allowing the company’s maintenance team to proactively respond by adjusting scheduled maintenance to avoid costly downtime.
GaMEP’s Sean Madhavaraman says, “Silon is more productive than ever and on track for growth. The strong results in this challenge are a great example of the decades-long focus of GaMEP to educate and train managers and employees in best practices, to develop and implement the latest technology, and to work together with businesses to find solutions.”
Daniel Raubenheimer and Matt Gammon, Silon’s general managers, also lauded GaMEP, saying, “GaMEP’s extensive experience within the manufacturing realm has been a great benefit to our company. The wireless condition monitoring sensors allow us to predict future breakdowns and mitigate a potential catastrophe — allowing us to operate in a safe manner, while saving money, time, and effort.”
News Contact
Blair Meeks
Institute Communications
Apr. 19, 2023
Anton Bernshteyn is forging connections and creating a language to help computer scientists and mathematicians collaborate on new problems — in particular, bridging the gap between solvable, finite problems and more challenging, infinite problems. Now, an NSF CAREER grant will help him achieve that goal.
The National Science Foundation Faculty Early Career Development Award is a five-year grant designed to help promising researchers establish a foundation for a lifetime of leadership in their field. Known as CAREER awards, the grants are NSF’s most prestigious funding for untenured assistant professors.
Bernshteyn, an assistant professor in the School of Mathematics, will focus on “Developing a unified theory of descriptive combinatorics and local algorithms” — connecting concepts and work being done in two previously separate mathematical and computer science fields. “Surprisingly,” Bernshteyn says, “it turns out that these two areas are closely related, and that ideas and results from one can often be applied in the other.”
“This relationship is going to benefit both areas tremendously,” Bernshteyn says. “It significantly increases the number of tools we can use”
By pioneering this connection, Bernshteyn hopes to connect techniques that mathematicians use to study infinite structures (like dynamic, continuously evolving structures found in nature), with the algorithms computer scientists use to model large – but still limited – interconnected networks and systems (like a network of computers or cell phones).
“The final goal, for certain types of problems,” he continues, “is to take all these questions about complicated infinite objects and translate them into questions about finite structures, which are much easier to work with and have applications in practical large-scale computing.”
Creating a unified theory
It all started with a paper Bernshteyn wrote in 2020, which showed that mathematics and computer science could be used in tandem to develop powerful problem-solving techniques. Since the fields used different terminology, however, it soon became clear that a “dictionary” or a unified theory would need to be created to help specialists communicate and collaborate. Now that dictionary is being built, bringing together two previously-distinct fields: distributed computing (a field of computer science), and descriptive set theory (a field of mathematics).
Computer scientists use distributed computing to study so-called “distributed systems,” which model extremely large networks — like the Internet — that involve millions of interconnected machines that are operating independently (for example, blockchain, social networks, streaming services, and cloud computing systems).
“Crucially, these systems are decentralized,” Bernshteyn says. ”Although parts of the network can communicate with each other, each of them has limited information about the network’s overall structure and must make decisions based only on this limited information.” Distributed systems allow researchers to develop strategies — called distributed algorithms — that “enable solving difficult problems with as little knowledge of the structure of the entire network as possible,” he adds.
At first, distributed algorithms appear entirely unrelated to the other area Bernshteyn’s work brings together: descriptive set theory, an area of pure mathematics concerned with infinite sets defined by “simple” mathematical formulas.
“Sets that do not have such simple definitions typically have properties that make them unsuitable for applications in other areas of mathematics. For example, they are often non-measurable – meaning that it is impossible, even in principle, to determine their length, area, or volume," Bernshteyn says.
Because undefinable sets are difficult to work with, descriptive set theory aims to understand which problems have “definable”— and therefore more widely applicable— solutions. Recently, a new subfield called descriptive combinatorics has emerged. “Descriptive combinatorics focuses specifically on problems inspired by the ways collections of discrete, individual objects can be organized,” Bernshteyn explains. “Although the field is quite young, it has already found a number of exciting applications in other areas of math.”
The key connection? Since the algorithms used by computer scientists in distributed computing are designed to perform well on extremely large networks, they can also be used by mathematicians interested in infinite problems.
Solving infinite problems
Infinite problems often occur in nature, and the field of descriptive combinatorics has been particularly successful in helping to understand dynamical systems: structures that evolve with time according to specified laws (such as the flow of water in a river or the movement of planets in the Solar System). “Most mathematicians work with continuous, infinite objects, and hence they may benefit from the insight contributed by descriptive set theory,” Bernshteyn adds.
However, while infinite problems are common, they are also notoriously difficult to solve. “In infinite problems, there is no software that can tell you if the problem is solvable or not. There are infinitely many things to try, so it is impossible to test all of them. But if we can make our problems finite, we can sometimes determine which ones can and cannot be solved efficiently,” Bernshteyn says. “We may be able to determine which combinatorial problems can be solved in the infinite setting and get an explicit solution.”
“It turns out that, with some work, it is possible to implement the algorithms used in distributed computing on infinite networks, providing definable solutions to various combinatorial problems,” Bernshteyn says. “Conversely, in certain limited settings it is possible to translate definable solutions to problems on infinite structures into efficient distributed algorithms — although this part of the story is yet to be fully understood.”
A new frontier
As a recently emerged field, descriptive combinatorics is rapidly evolving, putting Bernshteyn and his research on the cutting edge of discovery. “There’s this new communication between separate fields of math and computer science—this huge synergy right now—it’s incredibly exciting,” Bernshteyn says.
Introducing new researchers to descriptive combinatorics, especially graduate students, is another priority for Bernshteyn. His CAREER grant funds will be especially dedicated to training graduate students who might not have had prior exposure to descriptive set theory. Bernshteyn also aims to design a suite of materials ranging from textbooks, lecture notes, instructional videos, workshops, and courses to support students and scholars as they enter this new field.
“There’s so much knowledge that’s been acquired,” Bernshteyn says. “There’s work being done by people within computer science, set theory, and so on. But researchers in these fields speak different languages, so to say, and a lot of effort needs to go into creating a way for them to understand each other. Unifying these fields will ultimately allow us to understand them all much better than we did before. Right now we’re only starting to glimpse what’s possible.”
News Contact
Written by Selena Langner
Feb. 09, 2023
Coral reef conservation is a steppingstone to protect marine biodiversity and life in the ocean as we know it. The health of coral also has huge societal implications: reef ecosystems provide sustenance and livelihoods for millions of people around the world. Conserving biodiversity in reef areas is both a social issue and a marine biodiversity priority.
In the face of climate change, Annalisa Bracco, professor in the School of Earth and Atmospheric Sciences at Georgia Institute of Technology, and Lyuba Novi, a postdoctoral researcher, offer a new methodology that could revolutionize how conservationists monitor coral. The researchers applied machine learning tools to study how climate impacts connectivity and biodiversity in the Pacific Ocean’s Coral Triangle — the most diverse and biologically complex marine ecosystem on the planet. Their research, recently published in Nature Communications Biology, overcomes time and resource barriers to contextualize the biodiversity of the Coral Triangle, while offering hope for better monitoring and protection in the future.
“We saw that the biodiversity of the Coral Triangle is incredibly dynamic,” Bracco said. “For a long time, it has been postulated that this is due to sea level change and distribution of land masses, but we are now starting to understand that there is more to the story.”
Connectivity refers to the conditions that allow different ecosystems to exchange genetic material such as eggs, larvae, or the young. Ocean currents spread genetic material and also create the dynamics that allow a body of water — and thus ecosystems — to maintain consistent chemical, biological, and physical properties. If coral larvae are spread to an ecoregion where the conditions are very similar to the original location, the larvae can start a new coral.
Bracco wanted to see how climate, and specifically the El Niño Southern Oscillation (ENSO) in its phases — El Niño, La Niña, and neutral conditions — impacts connectivity in the Coral Triangle. Climate events that move large masses of warm water in the Pacific Ocean bring enormous changes and have been known to exacerbate coral bleaching, in which corals turn white due to environmental stressors and become vulnerable to disease.
“Biologists collect data in situ, which is extremely important,” Bracco said. “But it’s not possible to monitor enormous regions in situ for many years — that would require a constant presence of scuba divers. So, figuring out how different ocean regions and large marine ecosystems are connected over time, especially in terms of foundational species, becomes important.”
Machine Learning for Discovering Connectivity
Years ago, Bracco and collaborators developed a tool, Delta Maps, that uses machine learning to identify “domains,” or regions within any kind of system that share the same dynamic. Bracco initially used it to analyze domains of climate variability in models but also suspected it could be used to study ecoregions in the ocean.
For this study, they used the tool to map out domains of connectivity in the Coral Triangle using 30 years of sea surface temperature data. Sea surface temperatures change in response to ocean currents over scales of weeks and months and across distances of tens of kilometers. These changes are relevant to coral connectivity, so the researchers built their machine learning tool based on this observation, using changes in surface ocean temperature to identify regions connected by currents. They also separated the time periods that they were considering into three categories: El Niño events, La Niña events, and neutral or “normal” times, painting a picture of how connectivity was impacted during major climate events in particular ecoregions.
Novi then applied a ranking system to the different ecoregions they identified. She used rank page centrality, a machine learning tool that was invented to rank webpages on the internet, on top of Delta Maps to identify which coral ecoregions were most strongly connected and able to receive the most coral larvae from other regions. Those regions would be the ones most likely sustain and survive through a bleaching event.
Climate Dynamics and Biodiversity
Bracco and Novi found that climate dynamics have contributed to biodiversity because of the way climate introduces variability to the currents in the equatorial Pacific Ocean. The researchers realized that alternation of El Niño and La Niña events has allowed for enormous genetic exchanges between the Indian and Pacific Oceans and enabled the ecosystems to survive through a variety of different climate situations.
“There is never an identical connection between ecoregions in all ENSO phases,” Bracco said. “In other parts of the world ocean, coral reefs are connected through a fixed, often small, number of ecoregions, and if you eliminate this fixed number of connections by bleaching all connected reefs, you will not be able to rebuild the corals in any of them. But in the Pacific the connections are changing all the time and are so dynamic that soon enough the bleached reef will receive larvae from completely different ecoregions in a different ENSO phase.”
They also concluded that, because of the Coral Triangle’s dynamic climate component, there is more possibility for rebuilding biodiversity there than anywhere else on the planet. And that the evolution of biodiversity in the Coral Triangle is not only linked to landmasses or sea levels but also to the evolution of ENSO through geological times. The researchers found that though ENSO causes coral bleaching, it has helped the Coral Triangle become so rich in biodiversity.
Better Monitoring Opportunities
Because coral reef survival has been designated a priority by the United Nations Sustainable Development Goals, Bracco and Novi’s research is poised to have broad applications. The researchers’ method identified which ecoregions conservationists should try hardest to protect and also the regions that conservationists could expect to have the most luck with protection measures. Their methodology can also help to identify which regions should be monitored more and the ones that could be considered lower priority for now due to the ways they are currently thriving.
“This research opens a lot of possibilities for better monitoring strategies, and especially how to monitor given a limited amount of resources and money,” Bracco said. “As of now, coral monitoring often happens when groups have a limited amount of funding to apply to a very specific localized region. We hope our method can be used to create a better monitoring over larger scales of time and space.”
CITATION: Novi, L., Bracco, A. “Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle.” Commun Biol 5, 1359 (2022).
News Contact
Catherine Barzler, Senior Research Writer/Editor
Sep. 28, 2022
Advancement in technology brings about plenty of benefits for everyday life, but it also provides cyber criminals and other potential adversaries with new opportunities to cause chaos for their own benefit.
As researchers begin to shape the future of artificial intelligence in manufacturing, Georgia Tech recognizes the potential risks to this technology once it is implemented on an industrial scale. That’s why Associate Professor Saman Zonouz will begin researching ways to protect the nation’s newest investment in manufacturing.
The project is part of the $65 million grant from the U.S. Department of Commerce’s Economic Development Administration to develop the Georgia AI Manufacturing (GA-AIM) Technology Corridor. While main purpose of the grant is to develop ways of integrating artificial intelligence into manufacturing, it will also help advance cybersecurity research, educational outreach, and workforce development in the subject as well.
“When introducing new capabilities, we don’t know about its cybersecurity weaknesses and landscape,” said Zonouz. “In the IT world, the potential cybersecurity vulnerabilities and corresponding mitigation are clear, but when it comes to artificial intelligence in manufacturing, the best practices are uncertain. We don’t know what all could go wrong.”
Zonouz will work alongside other Georgia Tech researchers in the new Advanced Manufacturing Pilot Facility (AMPF) to pinpoint where those inevitable attacks will come from and how they can be repelled. Along with a team of Ph.D. students, Zonouz will create a roadmap for future researchers, educators, and industry professionals to use when detecting and responding to cyberattacks.
“As we increasingly rely on computing and artificial intelligence systems to drive innovation and competitiveness, there is a growing recognition that the security of these systems is of paramount importance if we are to realize the anticipated gains,” said Michael Bailey, Inaugural Chair of the School of Cybersecurity and Privacy (SCP). “Professor Zonouz is an expert in the security of industrial control systems and will be a vital member of the new coalition as it seeks to provide leadership in manufacturing automation.”
Before coming to Georgia Tech, Zonouz worked with the School of Electrical and Computer Engineering (ECE) and the College of Engineering on protecting and studying the cyber-physical systems of manufacturing. He worked with Raheem Beyah, Dean of the College of Engineering and ECE professor, on several research papers including two that were published at the 26th USENIX Security Symposium, and the Network and Distributed System Security Symposium.
“As Georgia Tech continues to position itself as a leader in artificial intelligence manufacturing, interdisciplinarity collaboration is not only an added benefit, it is fundamental,” said Arijit Raychowdhury, Steve W. Chaddick School Chair and Professor of ECE. “Saman’s cybersecurity expertise will play a crucial role in the overall protection and success of GA-AIM and AMPF. ECE is proud to have him representing the school on this important project.”
The research is expected to take five years, which is typical for a project of this scale. Apart from research, there will be a workforce development and educational outreach portion of the GA-AIM program. The cyber testbed developed by Zonouz, and his team will live in the 24,000 square-foot AMPF facility.
News Contact
JP Popham
Communications Officer | School of Cybersecurity and Privacy
Georgia Institute of Technology
jpopham3@gatech.edu | scp.cc.gatech.edu
Sep. 15, 2022
When Alexandria Sweeny, better known as Alex, considered what she wanted to accomplish before graduating from Drew Charter School, the then high school junior set two goals: complete her engineering internship and make a positive impact.
She did both while strengthening her coding knowledge during her time as a camper and mentor at the Seth Bonder Camp in Computational and Data Science for Engineering (SBC).
“I did it when it was fully virtual, and it was definitely an experience,” said Sweeny who spent a week being introduced to computing and data science where she performed virtual activities, last June.
The camp, which is offered either as an online course or on-campus summer camp at Georgia Tech, is designed to build students’ problem-solving and analytical skills while furthering their interest in computer science as a potential career. It is also part of AI4OPT’s mission to inspire young Georgians to pursue STEM (science, technology, engineering and mathematics).
AI4OPT hosted its first in-person summer camp at Georgia Tech in June. The camp brought together 60 students from schools across Georgia including Drew Charter, Banneker High School, and Westlake High School.
Sweeny was asked to return to this particular camp—but this time, as a mentor.
“Of course, I said yes, because it was something fun that I could do over the summer preparing for college without it being too hefty,” said Sweeny. “It was something that I felt prepared for from attending the camp.”
Responses like Sweeny’s motivates SBC Site Managers like Reem Khir to introduce more bright minds to the camp centered around computer programming logic, programming language for AI, and teamwork.
“We expose them [high school students] to certain types of education areas like Twitter analysis, how to solve a sudoku, and even computational biology, if they wanted to consider a career in biology,” said Khir, who joined the camp last year to help students with assignments. This year, she took on even bigger leadership role by maintaining and observing two camps and facilitating 50 students and seven teaching assistants (TAs). She worked under a ‘student to student and student to TA’ interactive structure so that each participant took away a useful skill in data science.
“It’s the time where high school students start forming opinions and decisions about the career path they want to pursue,” said Khir. “The steppingstone is their college education, and we can help students in that period.”
AI4OPT Will Acquire and Advance Seth Bonder Camp
AI4OPT is working to adopt a short-term system used to track students after the camp. The institute wants to build up the system to see majors, colleges, and career paths each student has vowed to pursue before they head off to college or the workforce.
“This is a critical period for students,” said Khir. “It’s a time where students start thinking about a major for college and later impacting the next 20 or 30 years of their life. Being a part of that is very unique in terms of creating a positive influence in the next generation.”
AI4OPT is taking the lead over the SBC to offer the initiative more organizational support as the program has seen tremendous growth and has become a much broader initiative. The Seth Bonder Foundation, which first introduced the camp to those ages 10-18, will continue to fund the camp now more targeted towards high school students interested in engineering, but do not have access to computer science and/or data science in their middle and high schools.
“A lot of the different communities are not exposed to this and may never see this opportunity. The Seth Bonder Camp exposes high school students to AI opportunities and gives them skills to successfully enter the field of STEM with confidence,” said Professor Pascal Van Hentenryck, who’s brought his data sciences skills and knowledge to Georgia Tech and leads both AI4OPT and the SBC.
AI4OPT is in transition to lead the SBC to offer more organizational support as the program sees tremendous growth. The research Institute will expand the longitudinal camps to engage middle and high school students in these topics, while also bringing AI education and research programs to HBCU’s and Hispanic-serving colleges throughout the nation, addressing the widening gap in job opportunities.
Though Sweeny has transitioned away from coding and transcended into research, she never stopped setting goals even now as a first-year biomedical engineering major at Georgia Tech.
“Do anything you can to take it [the SBC] even if you don't want to go into coding,” said Sweeny. “It is a good way to meet new people learn new skills, it is something that you don't necessarily have to have a love for coding to have to do it.”
To learn more about the Seth Bonder Camp in Computational and Data Science for Engineering and to partner with the camp, visit sethbondercamp.isye.gatech.edu.
(Writer’s note: This article is part of a series highlighting AI4OPT members, students, education programs and professional development testimonies.)
Jun. 01, 2022
School of Industrial and Systems Engineering Professor Pinar Keskinocak was recognized at Georgia Tech’s annual 2022 Faculty and Staff Honors Luncheon with the Class of 1934 Outstanding Service Award. The award recognizes her long service both to the Institute and to her field.
Keskinocak has long served as a leader with the Institute for Operations Research and the Management Sciences (INFORMS). A fellow with the institute, she has served as president, vice president of membership and professional recognition, and is the co-founder and former president of the INFORMS Section on Public Programs, Service, and Needs, and the president of the INFORMS Health Applications Society.
At Georgia Tech she has also served as the College of Engineering Advance Professor for six years and was a leading voice over the past three years of the Covid-19 pandemic. In addition to working with the Georgia Department of Public Health, she served on the Institute’s Covid task force helping to establish an institutional approach to the pandemic.
“It’s an honor, first of all, to have had the opportunity to serve,” she said. “Our communities at Georgia Tech and beyond are wonderful, so to be recognized among all of these outstanding contributors is a great honor.”
Keskinocak’s research focuses on the application of operations research and management science with society impact, particularly regarding health and humanitarian applications, supply chain management, and logistics. She is the director of ISyE’s Center for Health and Humanitarian Systems. Recent work has focused on infectious disease modeling in response to Covid-19.
Apr. 27, 2022
By Frida Carrera
On Wednesday, April 13th 2022, the Undergraduate Research Opportunities Program (UROP) hosted the 16th annual Spring Undergraduate Research Symposium. UROP’s annual symposium is Georgia Tech’s largest undergraduate research colloquium and allows students to present their research and gain valuable skills and presentation experience. Each year the symposium also presents awards to the top poster and oral presentation from each college and honors the Outstanding Undergraduate Researcher (OUR) from each college. And with over 40 oral presentations and nearly 90 poster presentations, this year’s symposium proved to be another success for UROP and Georgia Tech.
This year the symposium was held in Exhibition Hall and opened with an introduction and keynote address to students, faculty, and other non-presenters. Shortly after, the event moved into the poster presentations segment where undergraduate students displayed their research to judges, faculty, and other attendees. The oral presentations followed soon after and gave student researchers the opportunity to go more in-depth with their research and findings and answer any questions the judges and attendees had. To end the event, sponsoring colleges and departments recognized Outstanding Undergraduate Researchers from their respective colleges. Additionally, the symposium judges were tasked with selecting the top student researchers having exceptional poster and oral presentations.
Any Georgia Tech undergraduate student interested in presenting their research is encouraged to apply for future symposiums and to build on research presentation skills, connect with other undergraduate researchers and faculty, and the chance to be recognized with awards by members of the Georgia Tech research community. UROP also hosts other research-related events and workshops throughout the school year to assist undergraduate students interested in research and build on their passions!
To view the list of awardees and pictures from the event visit: https://symposium.urop.gatech.edu/awards/
To learn more about undergraduate research at Georgia Tech visit: https://urop.gatech.edu/
Mar. 18, 2022
By Frida Carrera
During the summer of 2021, computer science student Neil Sanghavi and computer science recent grad Ahan Shah, both from Fairfax, VA, reconnected to catch up with one another and discuss the projects they were working on. In doing so they discovered a mutual resolve to create something using innovative technology and solve a problem relating to intellectual property, specifically patents. Both Neil and Ahan had just started to get into crypto trading and realized that NFT technology had more to offer than its collectible aspect. Here the idea of PatentX was created: to use NFT technology to provide utility in an antiquated space that lacked efficiency.
“It is estimated that we have $1 trillion in unused IP in the United States currently. Additionally, it is reported that there is $25.6 billion worth of patent monetization available today. This is why we created PatentX, a blockchain-backed marketplace to facilitate intellectual property transactions. We built this to make sure the little man innovators and entrepreneurs have an outlet to monetize and connect their patents with the world. Not only that, we are creating tools for large businesses, law firms, venture capitals to manage all of their IP on the blockchain that can handle transactions in seconds.”
Neil and Ahan describe their product launch process as a great learning experience and are firm believers that there can never be too much help. They are currently supported by DXPartners and have received help from various mentors and blockchain professionals. They have been able to traverse obstacles and learn about the marketing, finance, and business aspects behind building a startup despite coming from a technical background.
Their vision for PatentX is to disrupt the traditional way intellectual property is being transacted and to become the World’s Next Web3 Patent Office. PatentX will be releasing an NFT collection of the most historic patent innovations this early March and encourage interested individuals to stay tuned for their launch.
To learn more about PatentX visit their social media:
Twitter: @PatentXNFT
Instagram: @PatentX.io
To learn more about student innovation at Georgia Tech visit: https://innovation.cae.gatech.edu/
Mar. 14, 2022
By Frida Carrera
On April 2, 2022, Team carSEAL will represent Georgia Tech in the 6th annual ACC InVenture Prize Competition hosted this year by Florida State University. Team members Shovan Bhatia, Joshua Cruz, Nicholas Lima, Derek Prusener, and Giancarlo Riccobono will compete against other teams in the ACC Conference for a chance to win up to $30,000 in prizes.
carSEAL began with five biomedical engineering students collaborating on a capstone project. After being accepted into the highly sought-after Mayo Clinic Capstone Project, they received mentorship from Dr. Rabih Tawk, a world-renowned neurosurgeon. With his guidance, they learned that surgeons currently lack the tools to close the carotid artery after endovascular procedures. Through a pragmatic approach, the team developed 100+ conceptual designs and iterations. After numerous discussions with attending surgeons across the nation and preliminary testing, they developed carSEAL – a vascular closure device for the carotid artery.
So far, the team has found the InVenture Prize process to be exhilarating.
“Through each round of this process, we have seen incredible teams working on impactful projects and it is exciting to be surrounded by such brilliant minds from numerous backgrounds. It has been especially rewarding working with so many supportive advisors from Georgia Tech, who have been through the startup process and have freely offered their expertise. Along each step of this process, we have learned something new to refine our pitch and ensure we are presenting our most competitive self at the ACC.”
Currently, aside from preparing for the ACC InVenture Prize, the carSEAL team is performing benchtop lab testing to evaluate its efficacy in animal models. Soon after, the team will be moving to pre-clinical studies on their path to obtaining FDA clearance before carSEAL is commercialized. Winning the ACC InVenture Prize would help them gain more traction and gather sufficient funds to help them with this process.
“I am extremely proud of our team’s achievements in the short 6 months that we have worked together. carSEAL has gained a lot of traction already and we are excited to see how far we can take this, hopefully bringing carSEAL to clinical practice within a few years,” Bhatia stated.
The Georgia Tech community can support carSEAL in the competition by voting for them for the People’s Choice Awards by visiting: https://accinventureprize.com/peoples-choice-voting. Online voting begins March 28.
To learn more about the ACC InVenture Prize visit https://accinventureprize.com.
Pagination
- Previous page
- 2 Page 2
- Next page